Pearson Edexcel Level 1/Level 2 GCSE (9-1)

May-June 2022 Assessment Window

Physics
 Combined Science (Physics)

Equations List

You are not permitted to take this notice into the examination.
A version of this equation list will be included with the May-June 2022 question papers. This document is valid if downloaded from the Pearson Qualifications website.

If you're taking GCSE (9-1) Combined Science or GCSE (9-1) Physics, you will need these equations:

HT = higher tier

distance travelled $=$ average speed \times time		
	acceleration $=$ change in velocity \div time taken	$a=\frac{(v-u)}{t}$
	force $=$ mass \times acceleration	$F=m \times a$
	weight $=$ mass \times gravitational field strength	$W=m \times g$
HT	momentum $=$ mass \times velocity	$\boldsymbol{p}=\boldsymbol{m} \times \boldsymbol{v}$
	change in gravitational potential energy $=$ mass \times gravitational field strength \times change in vertical height	$\Delta G P E=m \times g \times \Delta h$
	kinetic energy $=1 / 2 \times$ mass $\times(\text { speed })^{2}$	$K E=\frac{1}{2} \times m \times v^{2}$
	$\text { efficiency }=\frac{\text { (useful energy transferred by the device) }}{\text { (total energy supplied to the device) }}$	
	wave speed $=$ frequency \times wavelength	$v=f \times \lambda$
	wave speed $=$ distance \div time	$v=\frac{x}{t}$
	work done $=$ force \times distance moved in the direction of the force	$E=F \times d$
	power $=$ work done \div time taken	$P=\frac{E}{t}$
	energy transferred $=$ charge moved \times potential difference	$E=Q \times V$
	charge $=$ current \times time	$Q=I \times t$
	potential difference $=$ current \times resistance	$V=I \times R$
	power $=$ energy transferred \div time taken	$P=\frac{E}{t}$
	electrical power $=$ current \times potential difference	$P=I \times V$
	electrical power $=(\text { current })^{2} \times$ resistance	$P=I^{2} \times R$
	density $=$ mass \div volume	$\rho=\frac{m}{V}$

	force exerted on a spring $=$ spring constant \times extension	$F=k \times x$
	$(\text { final velocity })^{2}-(\text { initial velocity })^{2}=2 \times$ acceleration \times distance	$v^{2}-u^{2}=2 \times a \times x$
HT	force $=$ change in momentum \div time	$F=\frac{(\boldsymbol{m} \boldsymbol{v}-\boldsymbol{m} \boldsymbol{u})}{\boldsymbol{t}}$
	energy transferred $=$ current \times potential difference \times time	$E=I \times V \times t$
HT	force on a conductor at right angles to a magnetic field carrying a current $=$ magnetic flux density \times current \times length	$F=B \times I \times I$
	For transformers with 100% efficiency, potential difference across primary coil \times current in primary coil $=$ potential difference across secondary coil \times current in secondary coil	$V_{P} \times I_{P}=V_{S} \times I_{S}$
	change in thermal energy $=$ mass \times specific heat capacity \times change in temperature	$\Delta Q=m \times c \times \Delta \theta$
	thermal energy for a change of state $=$ mass \times specific latent heat	$Q=m \times L$
	energy transferred in stretching $=0.5 \times$ spring constant \times $\left(\right.$ extension) ${ }^{2}$	$E=\frac{1}{2} \times k \times x^{2}$

If you're taking GCSE (9-1) Physics, you also need these extra equations:

moment of a force $=$ force \times distance normal to the direction of the force		
	pressure $=$ force normal to surface \div area of surface	$P=\frac{F}{A}$
HT	$\frac{\text { potential difference across primary coil }}{\text { potential difference across secondary coil }}=\frac{\text { number of turns in primary coil }}{\text { number of turns in secondary coil }}$	$\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}}=\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}$
	to calculate pressure or volume for gases of fixed mass at constant temperature	$P_{1} \times V_{1}=P_{2} \times V_{2}$
HT	pressure due to a column of liquid $=$ height of column \times density of liquid \times gravitational field strength	$\boldsymbol{P}=\boldsymbol{h} \times \boldsymbol{\rho} \times \boldsymbol{g}$

END OF EQUATION LIST

